The Fabrication of ZnO Microrods on Monolayer Graphene and Their Photocatalytic Application.

نویسندگان

  • Jincheng Fan
  • Tengfei Li
  • Hang Heng
  • Berislav Markovič
  • Igor Markovič
چکیده

Zinc oxide (ZnO) microrods were fabricated on graphene/SiO(2)/Si substrate by a simple hydrothermal route. The obtained products were characterized using X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, photoluminescence and UV-visible spectrometry. Microrods exhibits hexagonal wurzite structure. Some ZnO clusters and twinned ZnO structures were found spread on the microrod array layer. The formation mechanism of ZnO microrods is discussed, emphasizing the formation mechanism of isolated clusters and twinned ZnO structures. Furthermore, microrods demonstrated a good photocatalytic performance towards rhodamine B degradation as ascribed to oxygen vacancies and interstitials considered as the photocatalytical active sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H2O2-based Green Corrosion Route to ZnO Microrods Photocatalysts on Zn Plate

Single crystal ZnO microrods are deposited on the surface of Zn plate through corrosion of Zn plate by H2O2 which is a green neutral reagent and easy to transform to H2O and O2. The structure and morphology of the obtained ZnO microrods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron diffraction. A thermodynamics mechanism was...

متن کامل

Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures.

Electronic and optical properties of graphene and graphitic ZnO (G/g-ZnO) nanocomposites have been investigated with density functional theory. Graphene interacts overall weakly with g-ZnO monolayer via van der Waals interaction. There is no charge transfer between the graphene and g-ZnO monolayer, while a charge redistribution does happen within the graphene layer itself, forming well-defined ...

متن کامل

Mathematical modelling of an annular photocatalytic reactor for methylene blue degradation under UV light irradiation using rGO-ZnO hybrid

The application of heterogeneous photocatalysis in industrial scale has been hindered by a lack of simple mathematical models that can be easily applied to reactor design and scale-up. This work intends to use a simple mathematical model for predicting methylene blue (MB) degradation in a slurry-annular photocatalytic reactor using zinc oxide (ZnO) hybridized with reduced graphene oxide (rGO)-Z...

متن کامل

Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth.

A novel ZnO/reduced graphene oxide (RGO)/CdS heterostructure was successfully synthesized via a facile three-step solution method. RGO serves as an interlayer between ZnO nanowires and CdS quantum dots (QDs), which provides a high speed charge transfer channel, leading to an enhanced charge separation efficiency. Under UV light irradiation, the photocatalytic activity of the ZnO/RGO/CdS heteros...

متن کامل

Cl-Doped ZnO Nanowire Arrays on 3D Graphene Foam with Highly Efficient Field Emission and Photocatalytic Properties.

An environmentally friendly, low-cost, and large-scale method is developed for fabrication of Cl-doped ZnO nanowire arrays (NWAs) on 3D graphene foam (Cl-ZnO NWAs/GF), and investigates its applications as a highly efficient field emitter and photocatalyst. The introduction of Cl-dopant in ZnO increases free electrons in the conduction band of ZnO and also leads to the rough surface of ZnO NWAs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta chimica Slovenica

دوره 62 4  شماره 

صفحات  -

تاریخ انتشار 2015